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Abstract: The optical nonlocality near the Dirac point in infinite
periodic metal-dielectric multilayer metamaterials is investigated through
the dispersion relation analysis according to the transfer-matrix method.
It is revealed that both the symmetric and asymmetric surface plasmon
polariton modes present the zero nonlocal effective permittivity, and the
degeneracy of these two modes results in the emergence of the Dirac point.
Furthermore, the Zitterbewegung effect near the Dirac point induced by the
optical nonlocality is demonstrated due to the coherent coupling between
the symmetric and asymmetric modes.
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1. Introduction

Metal-dielectric multilayer metamaterials have been studied for realizing many intriguing
photonics applications such as negative refraction [1, 2], subwavelength focusing [3, 4],
diffraction-free propagation [5–7], anomalous indefinite cavities [8], and Goos-Hänchen
shifts [9]. In general, the electromagnetic properties of periodic metal-dielectric multilayer
metamaterials are simplify described by the local effective medium theory (EMT), since the
meta-atoms (unit cells) of the multilayers are in the scale much smaller than the wavelength.
However, the dramatically different electromagnetic properties between the metal layer and the
dielectric layer will cause significant variations of the electromagnetic field over the scale of
meta-atom, so that strong spatial dispersion will be generated to induce the optical nonlocality
[10] not considered in local EMT. In addition, the optical nonlocality in the periodic metal-
dielectric multilayer stack will be significantly enhanced with the excitation of surface plasmon
polariton (SPP) modes along the interface of the metal layer and the dielectric layer [11].
The coupling of SPP modes in metal-dielectric multilayer stacks will lead to many interesting
electromagnetic phenomena. One example is the formation of the Dirac point first demonstrated
in metal-dielectric nanofilms in [12] due to the degeneracy of the symmetric and asymmetric
eigenmodes [13]. The Dirac point implies an effectively zero “optical mass” (zero electric
permittivity) when located at the center of the Brillouin zone, and it is important in the research
of epsilon-near-zero (ENZ) metamaterials [14, 15] and the nonlocal EMT [16–18].

In this work, the optical nonlocality near the Dirac point of the infinite periodic metal-
dielectric multilayer metamaterials is further investigated. According to the transfer-matrix
method, the exact dispersion relation of the periodic metal-dielectric multilayers is analyzed
to reveal the existence of both the symmetric and asymmetric SPP modes, where zero nonlocal
effective permittity is obtained. It is shown that the emergence of the Dirac point is due
to the degeneracy of the symmetric and asymmetric SPP modes. On the other hand, the
optical nonlocality of metal-dielectric multilayer stack is described by a nonlocal EMT through
the study of the iso-frequency contours (IFCs). Furthermore, the strong optical nonlocality
induced Zitterbewegung effect [19, 20] is demonstrated near the Dirac point in metal-dielectric
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multilayer stack, due to the coherent coupling between the symmetric and asymmetric SPP
modes.

2. Dispersion relation analysis in metal-dielectric multilayer stack

As depicted in Fig. 1(a), a metal-dielectric multilayer stack composited of infinite alternating
layers of gold (Au) and alumina (Al2O3) with thickness am = 10nm and ad = 350nm is
considered, with respect to the TM polarized light propagating in the x-y plane. The permittivity
of Au is described by the Drude model as εm = ε∞ − ω2

p/ω(ω + iγ) with the permittivity
constant ε∞ = 9, the plasma frequency ωp = 1.38 × 1016 rad · s−1, and the damping factor
γ = 0.11×1015 rad · s−1 [21]. In order to emphasize the optical nonlocality, the damping factor
γ in the Drude model is ignored in the following theoretical analysis. The permittivity of Al2O3

is simplify set as εd = 1.762 [22].

Fig. 1. (a) Schematic of the infinite periodic Au-Al2O3 multilayer stack with respect to
the TM polarized light. (b) The dispersion relation of frequency ω/ωp versus wave vector
ky/kp (red-solid curves) of the Au-Al2O3 multilayer stack, compared with the typical SPP
dispersion based on ky/kp = ω/ωp

√
εmεd/(εm + εd) (black-dashed curve). The light lines

in Air (green-solid line) and in Au-Al2O3 (green-dashed line) are also displayed. The dis-
tributions of the magnetic field Hz for the symmetric and asymmetric modes at the point
S and the point A are presented. (c) The corresponding band structure of frequency ω/ωp

versus wave vector kx/kp with the Dirac point at the Brillouin zone center.

According to the transfer-matrix method, the propagation of the TM polarized light in the
Au-Al2O3 multilayer stack follows the dispersion relation as [15]

cos(kx(am +ad)) = cos(kmxam)cos(kdxad)− 1
2

(
εmkdx

εdkmx
+

εdkmx

εmkdx

)
sin(kmxam)sin(kdxad) (1)

with kmx = (εmk2
0 − k2

y)
1/2 and kdx = (εdk2

0 − k2
y)

1/2. Under the condition of kx = 0, Eq. (1)
reveals the dispersion relation between frequency ω/ωp and wave vector ky/kp of the Au-
Al2O3 multilayer stack as

cos(kmxam)cos(kdxad)− 1
2

(
εmkdx

εdkmx
+

εdkmx

εmkdx

)
sin(kmxam)sin(kdxad) = 1 (2)

with the corresponding dispersion curves shown in Fig. 1(b). In the following analysis, the
frequency ω and the wave vector components kx and ky are normalized by the plasma frequency
ωp and the related plasma wave vector kp = ωp/c. As displayed in Fig. 1(b), the dispersion
relation of ω/ωp ∼ ky/kp possesses two branches below the light line in Al2O3, which represent
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the symmetric and asymmetric SPP modes confined at the interface of Au layer and Al2O3

layer. The dispersion relation implies the variations of the TM polarized light over the size of
the period in the Au-Al2O3 multilayer stack as functions of both frequency and wave vector,
leading to the optical nonlocality. The excitation of both the symmetric and asymmetric SPP
modes will enhance the variation of the electromagnetic field over the scale of the multilayer
period, as the electromagnetic field is strongly confined at the interface of Au layer and Al2O3

layer. The magnetic field Hz distributions of the symmetric and asymmetric SPP modes at the
point S and the point A are also presented in Fig. 1(b). As the wave vector ky/kp increases, the
two SPP branches converge to the typical SPP mode as ky/kp = ω/ωp

√
εmεd/(εm + εd) due to

the surface plasmon resonance, where εm + εd = 0. Furthermore, at the position of
⎧
⎪⎪⎨

⎪⎪⎩

kx/kp = 0

ky/kp =
√

εdamad/((ad −am)(ε∞am + εdad))

ω/ωp =
√

am/(ε∞am + εdad)

(3)

the degeneracy of the symmetric and asymmetric SPP mode forms the Dirac point, at
the frequency of local ENZ, where ε loc

y = (εmam + εdaa)/(am + ad) = 0. Correspondingly,
Fig. 1(c) displays the band structure of the Au-Al2O3 multilayer stack based on Eq. (1) under
the condition of ky/kp =

√
εdamad/((ad −am)(ε∞am + εdad)). The band 1 and band 2 are

associated with the symmetric and asymmetric SPP modes, and the degeneracy of the two
modes at the Brillouin zone center (kx/kp = 0) forms the Dirac point.

3. Optical nonlocality induced Zitterbewegung effect

The optical nonlocality in the Au-Al2O3 multilayer stack can be analyzed through the nonlocal
EMT, where the multilayer stack is regarded as bulk nonlocal effective medium with the
nonlocal effective permittivity depending on both frequency and wave vector. With respect
to the infinite Au-Al2O3 multilayer stack, the nonlocal EMT can be introduced as follows. Ac-
cording to the dispersion relation of Eq. (1), the wave vector kx can be represented as a function
of frequency ω and wave vector ky

kx(ω,ky) =
arccos

[
cos(kmxam)cos(kdxad)− 1

2

(
εmkdx
εdkmx

+ εdkmx
εmkdx

)
sin(kmxam)sin(kdxad)

]

am +ad
. (4)

On the other hand, the nonlocal effective medium dispersion relation of the Au-Al2O3

multilayer stack can be written as

k2
x/εnloc

y + k2
y/εnloc

x = k2
0 (5)

with the nonlocal effective permittivity components of εnloc
x and εnloc

y

⎧
⎨

⎩

εnloc
x (ω,ky) = ε loc

x = εmεd(am +ad)/(εmad + εdam)

εnloc
y (ω,ky) = kx(ω,ky)

2/
[
k2

0 − k2
y/εnloc

x (ω,ky)
] (6)

by substituting Eq. (4) into Eq. (5). It is noted that εnloc
x is approximated as the local value of

ε loc
x due to the relatively weak nonlocal effects along the x-direction. In contrast to the local

EMT, Eq. (6) indicates that εnloc
y = 0 when kx(ω,ky) = 0, which indicates that in Fig. 1(b)

both the symmetric and asymmetric SPP branches (including the Dirac point) present the zero
nonlocal effective permittivity. It can be explained that the symmetric and asymmetric SPP
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Fig. 2. The IFCs based on the dispersion relation of Eq. (1) (red-solid curves), the
nonlocal effective permittivities of Eq. (6) (black-dashed curves), and the local effective
permittivities (blue-solid curves) with respect to the frequency (a) 0.085ωp as 186.689THz
(below the Dirac point), (b) 0.092ωp as 202.692THz (at the Dirac point), and (c) 0.1ωp

as 219.634THz (above the Dirac point). The IFCs of air are plotted in green circles for
reference.

modes perform as evanescent waves with zero phase variation along the x-direction, leading to
the zero nonlocal effective permittivity for both the SPP modes.

Figure 2 displays the IFCs of the Au-Al2O3 multilayer stack based on the dispersion relation
of Eq. (1), the nonlocal effective permittivity of Eq. (6), and the local effective permittivity
with the frequency below the Dirac point [Fig. 2(a)], at the Dirac point [Fig. 2(b)], and above
the Dirac point [Fig. 2(c)]. Clearly, the IFCs based on Eq. (1) and Eq. (6) are exactly the
same around the Dirac point, while the IFCs based on the local effective permittivity can only
approximately predict the dispersion of the Au-Al2O3 multilayer stack close to the Brillouin
zone center for the symmetric SPP mode. In particular, the IFCs based on the local effective
permittivity reduce to a straight line at the frequency of Dirac point, which is dramatically
different from the exact IFCs based on the nonlocal effective permittivity of Eq. (6), due to the
giant optical nonlocality at the Dirac point. Moreover, the exact IFCs present a band transition
for the symmetric and asymmetric SPP modes across the Dirac point. It is shown that the
symmetric mode switches from a higher wave vector to a lower wave vector as the frequency
increases across the Dirac point, while the asymmetric mode behaves oppositely.

Such band transition and eigenmode switching near the Dirac point will induce extraordinary
beam propagation phenomena. Figure 3 shows the simulated beam propagation of a TM
polarized light in terms of a Gaussian beam as Hz = H0 exp(−x2/w2

0) with the frequency below
the Dirac point [Fig. 3(a)], at the Dirac point [Fig. 3(b)], and above the Dirac point [Fig. 3(c)],
with respect to the exact IFCs in Fig. 2. The waist of the Gaussian beam is set as w0 = 2λ , where
λ is the free space wavelength. The beam propagation patterns is plotted as the distributions
of the normalized magnetic field intensity |Hz|. In Fig. 3(b), as the symmetric and asymmetric
SPP modes degenerate at the Dirac point, the Gaussian beam splits into two beams in the
multilayer stack with an angle of θ = 67.1◦, as predicted by the IFCs in Fig. 2(b). The beam
splitting phenomenon can be explained in the context of classical conical diffraction [23, 24].
On the other hand, in Figs. 3(a) and 3(c), the beam propagation in the multilayer stack shows
oscillation patterns at the frequency either below or above the Dirac point, indicating the
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Fig. 3. The beam propagation patterns in the Au-Al2O3 multilayer stack for a TM polarized
Gaussian beam incident from air with respect to the frequency at (a) 0.085ωp (below the
Dirac point), (b) 0.092ωp (at the Dirac point), and (c) 0.1ωp (above the Dirac point)
in terms of the distributions of the normalized magnetic field intensity |Hz|. (d) The
oscillation of the beam center in the Au-Al2O3 multilayer stack calculated from the beam
propagation patterns at the frequency of 0.085ωp (blue-solid curve) and 0.1ωp (red-solid
curve) indicates the Zitterbewegung effect around the Dirac point.

Fig. 4. The beam propagation patterns of the Zitterbewegung in the Au-Al2O3 multilayer
stack for a TM polarized Gaussian beam at the frequency of 0.085ωp (below the Dirac
point) with respect to different Au damping factors of (a) 0.1γ , (b) 0.5γ , and (c) 1.0γ in
terms of the distributions of the normalized magnetic field intensity |Hz|. (d) The oscillation
of the beam center in the Au-Al2O3 multilayer stack calculated from the beam propagation
patterns with respect to different Au damping factors of 0.1γ (red-solid curve), 0.5γ (blue-
solid curve), and 1.0γ (black-solid curve).
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Zitterbewegung effect due to the back-and-forth coherent coupling between the symmetric and
asymmetric SPP modes [25]. The variation of the beam center shown in Fig. 3(d) defined as
xc =

∫
x |Hz(x,y)|dx/

∫ |Hz(x,y)|dx, clearly reveals a fast beam oscillation in the x-direction as
the beam propagated along the y-direction. Since the Zitterbewegung effect is related to the
coherent coupling between the symmetric and asymmetric SPP modes, the oscillation of the
beam center also represents the band transition around the Dirac point as illustrated in Figs. 2(a)
and 2(c). According to the nonlocal IFCs displayed in Figs. 2(a) and 2(c), there are only two
eigenmodes, the symmetric and asymmetric SPP modes, existing in the beam propagation
patterns of the Zitterbewegung. It is noted that the curvatures of these two eigenmodes present
opposite values near the kx/kp = 0 region. This fact indicates that as the beam propagating
along y-direction, the beam diffraction angle will oscillate back and forth between a positive
value and a negative value, corresponding to the coherent coupling between the symmetric
and asymmetric SPP modes. The oscillation of beam diffraction finally leads to the observed
Zitterbewegung effect shown in Figs. 3(a) and 3(c). As the frequency is below the Dirac point,
the symmetric SPP mode has higher wave vector ky than the asymmetric SPP mode, resulting
in the beam center oscillation in the positive region of the x-coordinate. On the contrary, after
the band transition across the Dirac point at a higher frequency, the asymmetric SPP mode gets
higher wave vector ky than the symmetric SPP mode, which flips the beam center oscillation to
the negative region of the x-coordinate.

Fig. 5. The beam propagation patterns of the Zitterbewegung in the Au-Al2O3 multilayer
stack for a TM polarized Gaussian beam at the frequency of 0.1ωp (above the Dirac point)
with respect to different Au damping factors of (a) 0.1γ , (b) 0.5γ , and (c) 1.0γ in terms
of the distributions of the normalized magnetic field intensity |Hz|. (d) The oscillation of
the beam center in the Au-Al2O3 multilayer stack calculated from the beam propagation
patterns with respect to different Au damping factors of 0.1γ (red-solid curve), 0.5γ (blue-
solid curve), and 1.0γ (black-solid curve).

In the previous analysis, the Au damping factor γ in the Drude model is neglected to enhance
the effects of optical nonlocality in the Au-Al2O3 multilayer stack. However, the optical loss of
Au will affect the oscillation strength of the Zitterbewegung effect. As shown in Fig. 4, the beam
propagation patterns of the Zitterbewegung in the Au-Al2O3 multilayer stack are simulated at
the frequency of 0.085ωp below the Dirac point with respect to different Au damping factors
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of 0.1γ [Fig. 4(a)], 0.5γ [Fig. 4(b)], and 1.0γ [Fig. 4(c)]. It is clearly shown that the beam
oscillation strength of the Zitterbewegung in the Au-Al2O3 multilayer stack is significantly
suppressed by the Au damping factor. Figure 4(d) plots the corresponding oscillations of the
beam center for different Au damping factors, indicating the reduced oscillation amplitude
due to the influence of the optical loss. Nevertheless, the Zitterbewegung effect can still be
observed in the simulation even as the optical loss of metal goes up to 1.0γ . Furthermore, similar
simulation results are obtained for the frequency of 0.1ωp above the Dirac point, as displayed in
Fig. 5. Moreover, according to the comparison on the beam center oscillations for different Au
damping factors in Figs. 3(d), 4(d), and 5(d), it is demonstrated that the Au damping factor will
not affect the band transition for the symmetric and asymmetric SPP modes across the Dirac
point in the Zitterbewegung, manifesting the flipping of the beam center oscillations from the
positive region to the negative region of the x-coordinate as the beam switches from a lower
frequency to a higher frequency across the Dirac point.

4. Conclusions

The optical nonlocality near the Dirac point in infinite periodic metal-dielectric multilayer
metamaterials has been investigated by performing the dispersion relation analysis based on
the transfer-matrix method. It is shown that the degeneracy of the symmetric and asymmetric
SPP modes forms the Dirac point where giant optical nonlocality exists. Both the symmetric
and asymmetric SPP modes in the dispersion curves present the zero nonlocal effective
permittivity. With the nonlocal EMT analysis, exact IFCs have been studied near the Dirac
point, leading to the extraordinary beam propagation of the Zitterbewegung effect in the
multilayer stack. Furthermore, it is demonstrated that the Zitterbewegung effect induced by
the optical nonlocality is due to the coherent coupling between the symmetric and asymmetric
SPP modes. Zitterbewegung is originally related to the trembling oscillation motion of a
free Dirac electron due to the coherent coupling between the positive and negative energy
states. The demonstration of the optical Zitterbewegung effect in metal-dielectric multilayer
metamaterials due to the coupling between the symmetric and asymmetric SPP eigenmodes
open new opportunities in exploring many complex quantum phenomena of nonrelativistic and
relativistic electrons in condensed-matter physics, such as Bloch oscillations, Zener tunneling,
and Klein tunneling. The analysis of the effects of metal optical loss on the beam propagation
patterns of the Zitterbewegung further facilitates the way toward the future spatial observation
of optical Zitterbewegung in metal-dielectric multilayer metamaterials in experiments.
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